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Introduction

The purpose of this brief study is to analyze the complete potential of the solid state laser in a
very long pulse/high energy mode of operation as well as in a very short / lower energy mode of
operation, operating in an actively-uncooled ( termed "Hot-Rod" mode or "Heat Capacity" mode)
method of operation. Concentrating on the phase aberrations to be expected by operating in such
manner, the study presented here reports on estimating the bulk phase and intensity aberration
distribution in the laser output beam during a single repped-pulse train. Recommendations are made for
mitigating such aberrations.

Summary of Results; Conclusions and Recommendations

In this study, we have analyzed the optical performance of an uncooled solid state laser, and for
reasons of reliability of performance, have chosen a slab-geometry, flashlamp-pumped MOPA design.
In the pulse-width regime required ( 5-50 ns) the single pulse output fluences allowed by LLNL
demonstrations, but degraded for repped operation, allow reasonable-shaped MO pulses to be amplified
to the reuquireed energy level with little or no extraction-induced phase aberrations. Further, using
LLNL data on thermal gain limitations, 100 -1000 pulses should be extractable from the laser device
before gain reduction and other spectroscopic effects begin in the gain medium. At this point, optical
pumping and lasing should be ceased, and cooling begun to return the medium to its original state. The
analysis indicates that pump-nonuniformities and intrinsic gain medium nonuniformities will probably
be the limiting causes of beam phase aberrations, as well as those in associated optical elements---all of
which point to engineering design and perhaps adaptive optics to ameliorate those effects which cannot
be eliminated by quality control and good engineering.

Statement of the Problem

In designing single-pulse solid-state uncooled lasers, the concentration typically 1s on the
extraction of maximum single-pulse energy at the desired pulse width with the desired beam average
phase uniformity. In designing repetitively -pulsed solid-state actively-cooled lasers, the concentration
is typically on the extraction of maximum long-term average power at the given pulse width and desired
pulse repetition rate, all with the desired beam average phase uniformity.

In the present study, however, the concentration is on the design of uncooled solid-state lasers
with the extraction of maximum total emitted laser energy ( single-pulse energy X pulse rep rate X
run-time) with a specified pulse width and with minimum area-integrated beam phase aberration, all
with an eye toward systems which can be cooled down relatively quickly to repeat this repped-pulse
lasing cycle in a reasonably fast turn-around time.

Method of Approach
In this analysis, we :
1. first lay out the alternatives to the modes of operation
- geometry of the gain medium ( slab vs rod)
-amplifier vs oscillator operation
2. then outline the key issues affecting the present problem



3. then discuss heat deposition and its effects on phase differences across the beam
4. then analyze the sources of phase aberration in the output beam, and
5. finally identify potential mitigation approaches

Technical Analysis

A) Mode of Operation
Figure 1 shows the basic geometries of solid-state lasers :
1. rod gain medium :axial extraction, radial pumping, radial cooling
2. slab gain medium: long-dimension extraction, short-dimension pumping and cooling
3. slab gain medium: Brewster's-angle extraction and pumping, short-dimension cooling

Figure 2 shows the laser design trade-off parameters . One of the important parameters is the
maximum extractable fluence ( joules/cm? of output) which the gain medium material can handle
without important irreversible damage in bulk or at the surface. The current values of maximum damage
threshold for SINGLE-PULSE operation at various pulse-widths are showing Figure 3. Note that in the
region attractive to ORION ( 5 to 50 ns ) the allowable output fluence at 1.06 microns is between 10 and
20 joules/cm® for glass and YAG hosts doped with Nd ions.

It 1s well known for both gas lasers and solid-state lasers, that oscillator or resonator extraction
techniques produce the highest extraction efficiency and the most compact and lighter-weight laser
designs, while master-oscillator/power-amplifier (MOPA) extraction techniques can provide higher
beam quality, more flexibility and tighter control of the output waveform and phase / frequency content
of the output beam at the price of larger, heavier and more cumbersome laser system designs.

SINCE MINIMIZING FLOOR-SPACE AND WEIGHT IS NOT AN OVER-RIDING
CONSIDERATION FOR THE GROUND-BASED ORION CONCEPT, WHILE MAXIMUM
FLEXIBILITY AND CONTROL AT HIGH BEAM QUALITY IS OF UTMOST IMPORTANCE, WE
HAVE CHOSEN THE MOPA AS OUR RECOMMENDED LASER ARCHITECTURE.

The next mode of operation to be chosen is the cooled vs uncooled version of the solid state
laser. Clearly for single-pulse operation, no cooling is considered. For rep-rated operation however,
whether to cool or not IS an issue. Clearly for continuous 24 hrs / day operation, we require active
cooling. However, for an operating mode where one 30 second debris engagement occurs every 10
minutes or so in one two-hour period at dawn and another at dusk ( a very real possibility for a viable
near-term system), one must question whether ACTIVE cooling is necessary during lasing, or just a
rapid cooldown between shots. These two operating scenarios can result in VERY different laser
designs, with the former (active cooling while lasing) being a MUCH more difficult ( and hence time-
consuming and hence expensive) laser design than a simpler, cheaper and potentially more robust
system which simply needs to be cooled down between bursts. It is the latter system which is discussed
in this report.

B) Key Issues

Figure 4 lists the issues which must be considered in any solid-state laser design as to damage,
performance as a simple laser energy source, and performance as a source of coherent radiation.

We assume in this report that issues of damage and performance as an energy source are taken care of
by good engineering design. We discuss her those issues concerning beam quality, especially those
important to an active optical system whose function it is to compensate for these in real time, either
open-loop (by pre-programming) or in closed-loop operation using sensors and feedback loops.
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SOLID STATE LASER DESIGN TRADE-OFF PARAMETERS

Material Damage Limits pulsed Joule/cm? and watt/cm® of output. Both scale with puise length

Pump-Radiation Attenuation Scales gain medium cross-section dimensions and doping fraction

Above parameters limit maximum energy per pulse

Gain Paraglilics Limit cavity length at achlevable small signal gain
Crystal Fracture Limits mean temperature rise for a given material. Beam quality degrades betore rods fracture.

Optical Path (temperature) in homogeneities Limits temperature “ripple” for allowable cavity length

Thermal Diffuglion / Conduction Limit pulse repetition rate for required temperature uniformity which drives
phase uniformity

QM_%MM Limit maximum rep rate for raw power output (may not be high-quality beam)

Above parameters dictate maximum rep rate

System Efficlencies Drive power and energy requirements
Platiorm Payload Capacity Limits allowable weight, volume and consumables
No Limit to Run Time For steady-state-cooling designs
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Damage limits stemming from Thermal Deposition and Inadequate Thermal Management

Fracture differential thermal profile buildup induces-- tension in outer (free ) edges
-- compression in center (free) region

Differential Expansion between gain mat’l and transmission-face coatings as well as edge-band coatings

Inclusions / Interfaces surface and bulk sites show --higher linear absorption than bulk deposition, and/or
--higher electric field concentrations with local heating higher than bulk deposition

Phase Aberrations resulting from Differential Thermal Deposition

Thermally-induced phase shifts- change of index of refraction with temperature
- thermal expansion induces different physical path lengths for optical raypaths

10

Photoelastic stress-induced changes in refractive index at laser wavelength

Thermal Lensing symmetrical thermal change in refractive index causes whole-beam divergence
Stress Bi-Refringence stress-induced changes in refractive index over range of wavelengths

Beam Steering asymmetric thermal changes in refractive index causes beam steering

Performance Limits due to Absolute Temperature Levels Reached

Redistribution of Population among Stark levels ( ie, gainis a function of temperature level)
Resonance Re-Absorption (more important at high gain values and high absolute temperature levels)

Line-Width Dependence on Temperature Level (higher temperatures mean wider linewidths) ndyag20.doc  03/20/96



C) Heat Deposition Analysis

The discussion of heat deposition in the solid state laser is dominated by the line spectrum of
the absorption by the solid state laser's gain medium convolved with the power spectrum of the pump
source, and to a lesser extent the design of the optical cavity which traps (or does not trap) the pump
radiation for ultimate absorption by the gain medium. The conventional mode of operation fro small
lasers and/or CW lasers is to use efficient CW Diode lasers as pump sources. Because the CW diode
laser is tuned exactly to the desired absorption bands in the solid state laser, waste heat 1s limited to
quantum efficiency effects in the pumped solid-state laser. However, these CW diode lasers are too low
in power to pump the multi-kilojoule lasers required for ORION, so we are left with the conventional
pump sources ---dominated by doped Xenon flashlamps. Figure 5 (ref 1) shows typical energy
deposition fractions compared to typical laser extraction. Perhaps only 8% of the input lamp power 1s
absorbed by the laser gain medium, and only 2% of the input lamp energy appears as output laser
energy. Hence, this figure would indicate that of the deposited energy in the solid state medium, 25% is
emitted as radiation and 75% remains as heat. Figure 6 and 7 (from refs. 2,3 and 4) show more recent
achievements in efficiencies, including the additional efficiency levels for cooled systems, either real-
time actively-cooled or between-burst cooling as is discussed here. Note the efficiencies for diode
pumping in Figure 7, and summarized below.

Pump Scheme Diode Pump Flashlamp Pump
Electrical Power Into Pump 100 units (U) 100U

Power Absorbed by Laser 70 U-90 U 50U-75U
Power emitted by laser 1U-14U 03U-7U
Power Remaining as Heat 50 U-90U 45U-75U

It is these inefficiencies which must be addressed in the laser design , because it is the waste heat
LEVEL and its DISTRIBUTION which dictate the phase aberrations produced in the beam. Note
however, that the differences in diode pumping and flashlamp pumping are minimal as far as phase
aberrations go. The major difference is in the size and complexity of the power supplies which power
them.

Figure 8 sketches the energy level diagram for 3-level and 4-level solid state lasers., and sets the
nomenclature for the gain terms. Figure 9 sketched the thermal profiles in an amplifier stage which is
relatively well-filled with laser intensity, but which (as it must) has zero intensity near the edges of the
gain medium. Note the thermal profiles immediately after the extraction and the slower-timescale
deposition (leakage) between extraction pulses due to the slow upper-state decay which being excited by
the pump light. Figure 10 shows the expressions for the time-dependent heat deposition in the solid
state laser medium. Figures 11 and 12 list the equations used here to analyze the time-dependent
thermal profiles . Figure 13 shows the temperature change all along the optical axis of the final
amplifier stage immediately after an extraction pulse. Clearly, the more solid medium is used (ie, the
longer the gain medium "L") the less is the temperature change, because of the increased heat capacity
of the laser medium . After the extraction, heat continues to be deposited, because of the finite-rate
leakage out of the upper states of the laser medium between pulses. Figure 14 shows the temperature
change all along the optical axis of the last amplifier stage JUST BEFORE the next extraction pulse
(when the gain has been pumped up to design value). In the next Section, we will use these temperature
changes to scope the requirements on beam phase homogeneity.
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SCALING SOLID STATE LASER
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Three Level System
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Wos T21 ~ 9.9,
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Woa 721 * 1

Requires > 50% of ground level of ruby must be exited
T4, fast (1-2 ns)
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Four Level System

Pump Band

Ground
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NST AMPLIFIER HEATING ON A SINGLE PULSE
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D) Phase Aberration Analysis

Figure 15 shows the relations which give rise to phase inomogeneities A ¥ --the temperature-
dependent index of refraction of the gain medium and its thermal expansion (ie physical length growth)
due to heating in the center of the medium as compared to the region near the edge of the medium
which has been pumped optically just as hard as the center, but has had no laser extraction ( so it will
tend to get hotter than the center afier upper-state relaxation to ground). Figure 16 shows the phase
difference between the optical axis and the medium edge resulting from various A T''s along various
length gain media. The very simple relation tells a very powerful story -- keep either the temperature
difference between center and edge very small (ie DO NOT COOL, and FILL THE GAIN MEDIUM )
or keep the medium very short. Or both. A value of A'¥ of 0.3 keeps the far-field intensity within 10%
of that of a diffraction-limited beam. The simple formula below described this relationship.

I/lo= 1/(1+ (A¥))

Figure 17 uses AY = 0.3 as a limit, and relates the temperature rise in the slab center to the extracted
single-pulse fluence. For Nd Yag, up to 20 joules /cm? are allowed ( ie UP TO MATERIAL DAMAGE
THRESHOLDS !!! ) before the temperature differences are noticeable. If we limit the beam to the 1-20
joules/cm2 region, no gross extraction effects should be seen in uncooled amplifiers. The major thermal
differences will therefor be dominated by pump uniformity --that is good engineering of the pump lamps
and their optical cavities. Another cut at this conclusion is shown in Figure 18, which indicates that
flat-top (or equivalently super-gaussian shaped) amplifier pulses are not required for radial thermal
uniformity at the 10 joule/cm2 output level.

As to temperature level, the "Hot Rod"(ref 4) or "Heat Capacity Mode" (ref 5) or Thermal
Inertial Laser" (ref 3) methods of operation ----all equivalent ,simply different names given to the same
concept-- has very reasonable upper temperature-level limits before the gain begins to decrease. Figure
19 shows the centerline temperature rise after a single pulse as functions of the gain slab thickness and
pump pulse irradiance. Clearly, the more solid gain medium we have (ie the thicker the slab) the less
the temperature rise produces in the slab by the given energy delivery. The LLNL Beamlet laser and
others at LLNL used as models in this study pump in the region 0.2 to 2 joules of pump light per square
cm of slab surface area, have been successful cooling this energy density with active gas or liquid flows
for truly-continuous repetititve-pulse operation of Beamlet laser designs for the National Ignition
Facility (Ref 7 ). Figure 20 shows the successfully-demonstrated cooling rates on laser slabs at LLNL
and the operational laser slab optical pumping heat loadings at LLNL ( Refs 6 & 7) , and the implication
for CONTINUOUS rep-rated operation of the Beamlet laser, and this bodes well for cool-down between
bursts for the "Hot-Rod" mode of operation. Using these pump fluence levels and gain slabs in the 0.5 to
2 cm thick region will produce small (0.1-1 °C ) termperature rises in the slabs for each pulse. This
temperature rise per pulse will allow 100 to 1000 pulses to be emitted from the UNCOOLED medium
until the temperature level of 350 K to 400K (ref 6) is reached, where gain reduction begins as well as
Stark level redistribution, resonant re-absorption and line spreading (mentioned in Figure 4 as
considerations) begin to become important (ref 5, where 390 K is recommended as an upper limit)

Conclusions

In the above, we have analyzed the optical performance of an uncooled solid state laser, and for
reasons of reliability of performance, have chosen a slab-geometry, flashlamp-pumped MOPA design.
In the pulse-width regime required ( 5-50 ns) the single pulse output fluences allowed by LLNL
demonstrations, but degraded for repped operation, allow reasonable-shaped MO pulses to be amplified
to the reuquireed energy level with little or no extraction-induced phase aberrations. Further, using
LLNL data on thermal gain limitations, 100 -1000 pulses should be extractable from the laser device
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LIMITS ON BEAM PHASE HOMOGENEITY

® Assume

W.J. Schafer Associates
perfect pump-light irradiation of entire crystal
only quantum defect inefficlency appears as heat

Epnng % 0.76 Epeurous
E,.x 028 Eps

resonator configuration not used because strong radial Iinternal flux gradients cause
strong local dn/dt values even with variable reflectivity outcoupling
amplifier configuration using super Gaussians allows small radial gradients

) Evuu > 032 Evvug

@ RMS phase non-uniformity given by
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o RMS thermal non-uniformity given by heat balance
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THERMAL MANAGEMENT IN
SOLID STATE LASER MEDIUM

L=10em

Phase shift due to optical path difference
21 | dn
Ay) = £Z2 | = +(n-1)o.| LAT)
MY [dr i )0‘]

For near-perfect beam, (I/1, > 0.90)
require small phase shift in medium:

_ Ay) < 0.3
T T or nighquality beam B
D
O T e T T T e dn* Thermal
ot e s ity Ao T o Diffusion
Coefficient
Ruby 0.69 um 13x10°°C  6x10°%°C  0.13 cm?/S
ND:YAG 1.06 um 7x10°°C  8x10°°C  0.05 cm%S
ND:phosphate glass 1.06 ym 2-3x10%°C  9.8x10°/°C  0.006 cm’/S
HO:YLF 2.1 um 7x10° 8x10°* ~0.05 cm?%/S

Because of lonber wavelength, holmium (2 pm) lasers can handle more heat deposition than YAG
Because of faster thermal diffusion, Holmium-YLF and ND:YAG have higher PRF than glass host materials

Ref, Koachner, ~Solid State Laser Engineering” \

vgoRuchul 1
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GOOD QUALITY BEAM - USABLE OUTPUT FLUENCES
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for same output fluence and temperature ripple

Careful beam shaping and output-beam corrections
allow use of output tluences above 10 J/cm®
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before gain reduction and other spectroscopic effects begin in the gain medium. At this point, optical
pumping and lasing should be ceased, and cooling begun to return the medium to its original state. The
analysis indicates that pump-nonuniformities and intrinsic gain medium nonuniformities will probably
be the limiting causes of beam phase aberrations, as well as those in associated optical elements---all of
which point to engineering design and perhaps adaptive optics to ameliorate those effects which cannot
be eliminated by quality control and good engineering.
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